正点原子 发表于 2022-1-22 15:02:47

《领航者ZYNQ之嵌入式Linux开发指南_V2.0》第三十二章 内核定时器

1)实验平台:正点原子领航者V2 ZYNQ开发板
2)章节摘自【正点原子】《领航者ZYNQ之嵌入式Linux开发指南_V2.0》
3)购买链接:https://detail.tmall.com/item.htm?id=609032204975
4)全套实验源码+手册+视频下载地址:http://www.openedv.com/thread-329957-1-1.html
5)正点原子官方B站:https://space.bilibili.com/394620890
6)正点原子FPGA技术交流QQ群:90562473








第三十二章 Linux内核定时器实验
       定时器是我们最常用到的功能,一般用来完成定时功能,本章我们就来学习一下Linux内核提供的定时器API函数,通过这些定时器API函数我们可以完成很多要求定时的应用。Linux内核也提供了短延时函数,比如微秒、纳秒、毫秒延时函数,本章我们就来学习一下这些和时间有关的功能。

       1.1Linux时间管理和内核定时器简介
1.1.1内核时间管理简介
       学习过UCOS或FreeRTOS的同学应该知道,UCOS或FreeRTOS是需要一个硬件定时器提供系统时钟,一般使用Systick作为系统时钟源。同理,Linux要运行,也是需要一个系统时钟的,至于这个系统时钟是由哪个定时器提供的,笔者没有去研究过Linux内核,但是在Cortex-A7内核中有个通用定时器,在《Cortex-A7 Technical ReferenceManua.pdf》的“9:Generic Timer”章节有简单的讲解,关于这个通用定时器的详细内容,可以参考《ARM ArchitectureReference Manual ARMv7-A and ARMv7-R edition.pdf》的“chapter B8 The Generic Timer”章节。这个通用定时器是可选的,按照笔者学习FreeRTOS和STM32的经验,猜测Linux会将这个通用定时器作为Linux系统时钟源(前提是SOC得选配这个通用定时器)。具体是怎么做的笔者没有深入研究过,这里仅仅是猜测!不过对于我们Linux驱动编写者来说,不需要深入研究这些具体的实现,只需要掌握相应的API函数即可,除非你是内核编写者或者内核爱好者。
       Linux内核中有大量的函数需要时间管理,比如周期性的调度程序、延时程序、对于我们驱动编写者来说最常用的定时器。硬件定时器提供时钟源,时钟源的频率可以设置,设置好以后就周期性的产生定时中断,系统使用定时中断来计时。中断周期性产生的频率就是系统频率,也叫做节拍率(tick rate)(有的资料也叫系统频率),比如1000Hz,100Hz等等说的就是系统节拍率。系统节拍率是可以设置的,单位是Hz,我们在编译Linux内核的时候可以通过图形化界面设置系统节拍率,在内核源码目录下执行下面这条命令进入到menuconfig配置界面:
make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- menuconfig       按照如下路径打开配置界面:
-> Kernel Features                                                                                                                  
   -> Timer frequency (<choice> [=y])       选中“Timer frequency”,打开以后如图 32.1.1所示:

图 32.1.1 系统节拍率设置
       从图 32.1.1可以看出,可选的系统节拍率为100Hz、200Hz、250Hz、300Hz、500Hz和1000Hz,默认情况下选择100Hz。设置好以后打开Linux内核源码根目录下的.config文件,在此文件中有如所示定义:

图 32.1.2 系统节拍率
       图 32.1.2中的CONFIG_HZ为100,Linux内核会使用CONFIG_HZ来设置自己的系统时钟。打开文件include/asm-generic/param.h,有如下内容:
示例代码 32.1.1 include/asm-generic/param.h文件代码段
6 # undef HZ
7 # define HZ                               CONFIG_HZ
8 # define USER_HZ                        100   
9 # define CLOCKS_PER_SEC   (USER_HZ)       第7行定义了一个宏HZ,宏HZ就是CONFIG_HZ,因此HZ=100,我们后面编写Linux驱动的时候会常常用到HZ,因为HZ表示一秒的节拍数,也就是频率。
       大多数初学者看到系统节拍率默认为100Hz的时候都会有疑问,怎么这么小?100Hz是可选的节拍率里面最小的。为什么不选择大一点的呢?这里就引出了一个问题:高节拍率和低节拍率的优缺点:
       ①、高节拍率会提高系统时间精度,如果采用100Hz的节拍率,时间精度就是10ms,采用1000Hz的话时间精度就是1ms,精度提高了10倍。高精度时钟的好处有很多,对于那些对时间要求严格的函数来说,能够以更高的精度运行,时间测量也更加准确。
       ②、高节拍率会导致中断的产生更加频繁,频繁的中断会加剧系统的负担,1000Hz和100Hz的系统节拍率相比,系统要花费10倍的“精力”去处理中断。中断服务函数占用处理器的时间增加,但是现在的处理器性能都很强大,所以采用1000Hz的系统节拍率并不会增加太大的负载压力。根据自己的实际情况,选择合适的系统节拍率,本教程我们全部采用默认的100Hz系统节拍率。
       Linux内核使用全局变量jiffies来记录系统从启动以来的系统节拍数,系统启动的时候会将jiffies初始化为0,jiffies定义在文件include/linux/jiffies.h中,定义如下:
示例代码 32.1.2 include/jiffies.h文件代码段
76 extern u64 __jiffy_data jiffies_64;
77 extern unsigned long volatile __jiffy_data jiffies;       第76行,定义了一个64位的jiffies_64。
       第77行,定义了一个unsigned long类型的32位的jiffies。
       jiffies_64和jiffies其实是同一个东西,jiffies_64用于64位系统,而jiffies用于32位系统。为了兼容不同的硬件,jiffies其实就是jiffies_64的低32位,jiffies_64和jiffies的结构如图 32.1.3所示:

图 32.1.3 jiffies_64和jiffies结构图
       当我们访问jiffies的时候其实访问的是jiffies_64的低32位,使用get_jiffies_64这个函数可以获取jiffies_64的值。在32位的系统上读取jiffies的值,在64位的系统上jiffes和jiffies_64表示同一个变量,因此也可以直接读取jiffies的值。所以不管是32位的系统还是64位系统,都可以使用jiffies。
       前面说了HZ表示每秒的节拍数,jiffies表示系统运行的jiffies节拍数,所以jiffies/HZ就是系统运行时间,单位为秒。不管是32位还是64位的jiffies,都有溢出的风险,溢出以后会重新从0开始计数,相当于绕回来了,因此有些资料也将这个现象也叫做绕回。假如HZ为最大值1000的时候,32位的jiffies只需要49.7天就发生了绕回,对于64为的jiffies来说大概需要5.8亿年才能绕回,因此jiffies_64的绕回忽略不计。处理32位jiffies的绕回显得尤为重要,Linux内核提供了如表 32.1.1所示的几个API函数来处理绕回。

表 32.1.1 处理绕回的API函数
      如果unkown超过known的话,time_after函数返回真,否则返回假。如果unkown没有超过known的话time_before函数返回真,否则返回假。time_after_eq函数和time_after函数类似,只是多了判断等于这个条件。同理,time_before_eq函数和time_before函数也类似。比如我们要判断某段代码执行时间有没有超时,此时就可以使用如下所示代码:
示例代码 32.1.3 使用jiffies判断超时
1unsigned long timeout;
2timeout = jiffies + (2 * HZ);    /* 超时的时间点 */
3
4/*************************************
5    具体的代码
6   ************************************/
7   
8/* 判断有没有超时 */
9if(time_before(jiffies, timeout)) {
10          /* 超时未发生 */
11 } else {
12          /* 超时发生 */
13 }       timeout就是超时时间点,比如我们要判断代码执行时间是不是超过了2秒,那么超时时间点就是jiffies+(2*HZ),如果jiffies大于timeout那就表示超时了,否则就是没有超时。第4~6行就是具体的代码段。第9行通过函数time_before来判断jiffies是否小于timeout,如果小于的话就表示没有超时。
       为了方便开发,Linux内核提供了几个jiffies和ms、us、ns之间的转换函数,如表 32.1.2所示:

表 32.1.2 jiffies和ms、us、ns之间的转换函数
1.1.2内核定时器简介
       定时器是一个很常用的功能,需要周期性处理的工作都要用到定时器。Linux内核定时器采用系统时钟来实现,用软件的方式来实现,并不是SoC提供硬件定时器。Linux内核定时器使用很简单,只需要提供超时时间(相当于定时值)和定时处理函数即可,当超时时间到了以后设置的定时处理函数就会执行,和我们使用硬件定时器的套路一样,只是使用内核定时器不需要做一大堆的寄存器初始化工作。在使用内核定时器的时候要注意一点,内核定时器并不是周期性运行的,超时以后就会自动关闭,因此如果想要实现周期性定时,那么就需要在定时处理函数中重新开启定时器。Linux内核使用timer_list结构体表示内核定时器,timer_list定义在文件include/linux/timer.h中,定义如下(省略掉条件编译):
示例代码 32.1.4 timer_list结构体
struct timer_list {
    struct list_head entry;
    unsigned long expires;                  /* 定时器超时时间,单位是节拍数 */
    struct tvec_base *base;

    void (*function)(unsigned long);      /* 定时处理函数 */
    unsigned long data;                              /* 要传递给function函数的参数 */

    int slack;
};       要使用内核定时器首先要先定义一个timer_list变量,表示定时器,tiemr_list结构体的expires成员变量表示超时时间,单位为节拍数。比如我们现在需要定义一个周期为2秒的定时器,那么这个定时器的超时时间就是jiffies+(2*HZ),因此expires=jiffies+(2*HZ)。function就是定时器超时以后的定时处理函数,我们要做的工作就放到这个函数里面,需要我们编写这个定时处理函数。
       定义好定时器以后还需要通过一系列的API函数来初始化此定时器,这些函数如下:
       1、init_timer函数
       init_timer函数负责初始化timer_list类型变量,当我们定义了一个timer_list变量以后一定要先用init_timer初始化一下。init_timer函数原型如下:
void init_timer(struct timer_list *timer)       函数参数和返回值含义如下:
       timer:要初始化定时器。
       返回值:没有返回值。
       2、add_timer函数
       add_timer函数用于向Linux内核注册定时器,使用add_timer函数向内核注册定时器以后,定时器就会开始运行,函数原型如下:
void add_timer(struct timer_list *timer)       函数参数和返回值含义如下:
       timer:要注册的定时器。
       返回值:没有返回值。
       3、del_timer函数
       del_timer函数用于删除一个定时器,不管定时器有没有被激活,都可以使用此函数删除。在多处理器系统上,定时器可能会在其他的处理器上运行,因此在调用del_timer函数删除定时器之前要先等待其他处理器的定时处理器函数退出。del_timer函数原型如下:
int del_timer(struct timer_list * timer)       函数参数和返回值含义如下:
       timer:要删除的定时器。
       返回值:0,定时器还没被激活;1,定时器已经激活。
       4、del_timer_sync函数
       del_timer_sync函数是del_timer函数的同步版,会等待其他处理器使用完定时器再删除,del_timer_sync不能使用在中断上下文中。del_timer_sync函数原型如下所示:
int del_timer_sync(struct timer_list *timer)       函数参数和返回值含义如下:
       timer:要删除的定时器。
       返回值:0,定时器还没被激活;1,定时器已经激活。
       5、mod_timer函数
       mod_timer函数用于修改定时值,如果定时器还没有激活的话,mod_timer函数会激活定时器!函数原型如下:
int mod_timer(struct timer_list *timer, unsigned long expires)       函数参数和返回值含义如下:
       timer:要修改超时时间(定时值)的定时器。
       expires:修改后的超时时间。
       返回值:0,调用mod_timer函数前定时器未被激活;1,调用mod_timer函数前定时器已被激活。
       关于内核定时器常用的API函数就讲这些,内核定时器一般的使用流程如下所示:
示例代码 32.1.5 内核定时器使用方法演示
1struct timer_list timer;         /* 定义定时器 */
2
3/* 定时器回调函数 */
4void function(unsigned long arg)
5{   
6         /*
7             * 定时器处理代码
8             */
9   
10          /* 如果需要定时器周期性运行的话就使用mod_timer
11            * 函数重新设置超时值并且启动定时器。
12            */
13          mod_timer(&dev->timertest, jiffies + msecs_to_jiffies(2000));
14 }
15
16 /* 初始化函数 */
17 void init(void)
18 {
19          init_timer(&timer);                                 /* 初始化定时器 */
20
21          timer.function = function;                                  /* 设置定时处理函数 */
22          timer.expires=jffies + msecs_to_jiffies(2000);/* 超时时间2秒 */
23          timer.data = (unsigned long)&dev;               /* 将设备结构体作为参数 */
24
25          add_timer(&timer);                                          /* 启动定时器 */
26 }
27
28 /* 退出函数 */
29 void exit(void)
30 {
31          del_timer(&timer);/* 删除定时器 */
32          /* 或者使用 */
33          del_timer_sync(&timer);
34 }1.1.3Linux内核短延时函数
       有时候我们需要在内核中实现短延时,尤其是在Linux驱动中。Linux内核提供了毫秒、微秒和纳秒延时函数,这三个函数如表 32.1.3所示:

表 32.1.3 内核短延时函数
       1.2硬件原理图分析
       本章使用通过设置一个定时器来实现周期性的闪烁LED灯,还是使用PS_LED0为例,关于PS_LED0的硬件原理图参考22.3小节即可。
       1.3实验程序编写
       本实验对应的例程路径为:ZYNQ开发板光盘资料(A盘)\4_SourceCode\3_Embedded_Linux\Linux驱动例程\12_timer
       本章实验我们使用内核定时器周期性的点亮和熄灭开发板上的PS_LED0,LED灯的闪烁周期由内核定时器来设置,测试应用程序可以控制内核定时器周期。
1.3.1修改设备树文件
       本章实验使用到了LED灯,LED灯的设备树节点信息使用27.3.1小节创建的即可。
1.3.2定时器驱动程序编写
       在drivers目录下新建名为“12_timer”的文件夹,在12_timer目录下创建一个名为timer.c的源文件,在timer.c里面输入如下内容:
示例代码 32.3.1 timer.c文件代码段
1 /***************************************************************
2Copyright © ALIENTEK Co., Ltd. 1998-2029. All rights reserved.
3文件名    : timer.c
4作者      : 邓涛
5版本      : V1.0
6描述      : linux内核定时器测试
7其他      : 无
8论坛      : <a href="www.openedv.com" target="_blank">www.openedv.com</a>
9日志      : 初版V1.0 2019/1/30 邓涛创建
10***************************************************************/
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/errno.h>
15 #include <linux/gpio.h>
16 #include <asm/uaccess.h>
17 #include <linux/cdev.h>
18 #include <linux/of.h>
19 #include <linux/of_gpio.h>
20 #include <linux/timer.h>
21 #include <linux/types.h>
22
23 #define LED_CNT                        1                /* 设备号个数 */
24 #define LED_NAME                "led"      /* 名字 */
25
26 /* ioctl函数命令定义 */
27 #define CMD_LED_CLOSE      (_IO(0XEF, 0x1))                /* 关闭LED */
28 #define CMD_LED_OPEN                (_IO(0XEF, 0x2))      /* 打开LED */
29 #define CMD_SET_PERIOD      (_IO(0XEF, 0x3))                /* 设置LED闪烁频率 */
30
31
32 /* led设备结构体 */
33 struct led_dev {
34   dev_t devid;                              /* 设备号 */
35   struct cdev cdev;                        /* cdev */
36   struct class *class;                        /* 类 */
37   struct device *device;                /* 设备 */
38   int major;                                        /* 主设备号 */
39   int minor;                              /* 次设备号 */
40   struct device_node *nd;                /* 设备节点 */
41   int led_gpio;                              /* GPIO编号 */
42   int period;                              /* 定时周期,单位为ms */
43   struct timer_list timer;                /* 定义一个定时器 */
44   spinlock_t spinlock;                /* 定义自旋锁 */
45 };
46
47 static struct led_dev led;      /* led设备 */
48
49 /*
50* @description                        : 打开设备
51* @param – inode                        : 传递给驱动的inode
52* @param – filp                        : 设备文件,file结构体有个叫做private_data的成员变量
53*                                                一般在open的时候将private_data指向设备结构体。
54* @return                              : 0 成功;其他 失败
55*/
56 static int led_open(struct inode *inode, struct file *filp)
57 {
58   return 0;
59 }
60
61 /*
62* @description                        : 从设备读取数据
63* @param – filp                        : 要打开的设备文件(文件描述符)
64* @param – buf                        : 返回给用户空间的数据缓冲区
65* @param – cnt                        : 要读取的数据长度
66* @param – offt                        : 相对于文件首地址的偏移
67* @return                              : 读取的字节数,如果为负值,表示读取失败
68*/
69 static ssize_t led_read(struct file *filp, char __user *buf,
70             size_t cnt, loff_t *offt)
71 {
72   return 0;
73 }
74
75 /*
76* @description                        : 向设备写数据
77* @param – filp                        : 设备文件,表示打开的文件描述符
78* @param – buf                        : 要写给设备写入的数据
79* @param – cnt                        : 要写入的数据长度
80* @param – offt                        : 相对于文件首地址的偏移
81* @return                              : 写入的字节数,如果为负值,表示写入失败
82*/
83 static ssize_t led_write(struct file *filp, const char __user *buf,
84             size_t cnt, loff_t *offt)
85 {
86   return 0;
87 }
88
89 /*
90* @description                        : 关闭/释放设备
91* @param – filp                        : 要关闭的设备文件(文件描述符)
92* @return                              : 0 成功;其他 失败
93*/
94 static int led_release(struct inode *inode, struct file *filp)
95 {
96   return 0;
97 }
98
99 /*
100* @description                        : ioctl函数,
101* @param – filp                        : 要打开的设备文件(文件描述符)
102* @param – cmd                        : 应用程序发送过来的命令
103* @param – arg                        : 参数
104* @return                              : 0 成功;其他 失败
105*/
106 static long led_unlocked_ioctl(struct file *filp, unsigned int cmd,
107             unsigned long arg)
108 {
109   unsigned long flags;
110
111   /* 自旋锁上锁 */
112   spin_lock_irqsave(&led.spinlock, flags);
113
114   switch (cmd) {
115
116   case CMD_LED_CLOSE:
117         del_timer_sync(&led.timer);
118         gpio_set_value(led.led_gpio, 0);
119         break;
120
121   case CMD_LED_OPEN:
122         del_timer_sync(&led.timer);
123         gpio_set_value(led.led_gpio, 1);
124         break;
125
126   case CMD_SET_PERIOD:
127         led.period = arg;
128         mod_timer(&led.timer, jiffies + msecs_to_jiffies(arg));
129         break;
130
131   default: break;
132   }
133
134   /* 自旋锁解锁 */
135   spin_unlock_irqrestore(&led.spinlock, flags);
136
137   return 0;
138 }
139
140 /* 设备操作函数 */
141 static struct file_operations led_fops = {
142   .owner                              = THIS_MODULE,
143   .open                              = led_open,
144   .read                              = led_read,
145   .write                              = led_write,
146   .release                        = led_release,
147   .unlocked_ioctl      = led_unlocked_ioctl,
148 };
149
150 /* 定时器回调函数 */
151 static void led_timer_function(unsigned long arg)
152 {
153   static bool on = 1;
154   unsigned long flags;
155
156   /* 每次都取反,实现LED灯反转 */
157   on = !on;
158
159   /* 自旋锁上锁 */
160   spin_lock_irqsave(&led.spinlock, flags);
161
162   /* 设置GPIO电平状态 */
163   gpio_set_value(led.led_gpio, on);
164
165   /* 重启定时器 */
166   mod_timer(&led.timer, jiffies + msecs_to_jiffies(led.period));
167
168   /* 自旋锁解锁 */
169   spin_unlock_irqrestore(&led.spinlock, flags);
170 }
171
172 static int __init led_init(void)
173 {
174   const char *str;
175   int val;
176   int ret;
177
178   /* 初始化自旋锁 */
179   spin_lock_init(&led.spinlock);
180
181   /* 1.获取led设备节点 */
182   led.nd = of_find_node_by_path("/led");
183   if(NULL == led.nd) {
184         printk(KERN_ERR "led: Failed to get led node\n");
185         return -EINVAL;
186   }
187
188   /* 2.读取status属性 */
189   ret = of_property_read_string(led.nd, "status", &str);
190   if(!ret) {
191         if (strcmp(str, "okay"))
192             return -EINVAL;
193   }
194
195   /* 3.获取compatible属性值并进行匹配 */
196   ret = of_property_read_string(led.nd, "compatible", &str);
197   if(ret) {
198         printk(KERN_ERR "led: Failed to get compatible property\n");
199         return ret;
200   }
201
202   if (strcmp(str, "alientek,led")) {
203         printk(KERN_ERR "led: Compatible match failed\n");
204         return -EINVAL;
205   }
206
207   printk(KERN_INFO "led: device matching successful!\r\n");
208
209   /* 4.获取设备树中的led-gpio属性,得到LED所使用的GPIO编号 */
210   led.led_gpio = of_get_named_gpio(led.nd, "led-gpio", 0);
211   if(!gpio_is_valid(led.led_gpio)) {
212         printk(KERN_ERR "led: Failed to get led-gpio\n");
213         return -EINVAL;
214   }
215
216   printk(KERN_INFO "led: led-gpio num = %d\r\n", led.led_gpio);
217
218   /* 5.向gpio子系统申请使用GPIO */
219   ret = gpio_request(led.led_gpio, "LED Gpio");
220   if (ret) {
221         printk(KERN_ERR "led: Failed to request led-gpio\n");
222         return ret;
223   }
224
225   /* 6.设置LED灯初始状态 */
226   ret = of_property_read_string(led.nd, "default-state", &str);
227   if(!ret) {
228         if (!strcmp(str, "on"))
229             val = 1;
230         else
231             val = 0;
232   } else
233         val = 0;
234
235   gpio_direction_output(led.led_gpio, val);
236
237   /* 7.注册字符设备驱动 */
238      /* 创建设备号 */
239   if (led.major) {
240         led.devid = MKDEV(led.major, 0);
241         ret = register_chrdev_region(led.devid, LED_CNT, LED_NAME);
242         if (ret)
243             goto out1;
244   } else {
245         ret = alloc_chrdev_region(&led.devid, 0, LED_CNT, LED_NAME);
246         if (ret)
247             goto out1;
248
249         led.major = MAJOR(led.devid);
250         led.minor = MINOR(led.devid);
251   }
252
253   printk(KERN_INFO "led: major=%d, minor=%d\r\n", led.major, led.minor);
254
255      /* 初始化cdev */
256   led.cdev.owner = THIS_MODULE;
257   cdev_init(&led.cdev, &led_fops);
258
259      /* 添加cdev */
260   ret = cdev_add(&led.cdev, led.devid, LED_CNT);
261   if (ret)
262         goto out2;
263
264      /* 创建类 */
265   led.class = class_create(THIS_MODULE, LED_NAME);
266   if (IS_ERR(led.class)) {
267         ret = PTR_ERR(led.class);
268         goto out3;
269   }
270
271      /* 创建设备 */
272   led.device = device_create(led.class, NULL,
273               led.devid, NULL, LED_NAME);
274   if (IS_ERR(led.device)) {
275         ret = PTR_ERR(led.device);
276         goto out4;
277   }
278
279   /* 8.初始化timer,绑定定时器处理函数,此时还未设置周期,所以不会激活定时器 */
280   init_timer(&led.timer);
281   led.timer.function = led_timer_function;
282
283   return 0;
284
285 out4:
286   class_destroy(led.class);
287
288 out3:
289   cdev_del(&led.cdev);
290
291 out2:
292   unregister_chrdev_region(led.devid, LED_CNT);
293
294 out1:
295   gpio_free(led.led_gpio);
296
297   return ret;
298 }
299
300 static void __exit led_exit(void)
301 {
302   /* 删除定时器 */
303   del_timer_sync(&led.timer);
304
305   /* 注销设备 */
306   device_destroy(led.class, led.devid);
307
308   /* 注销类 */
309   class_destroy(led.class);
310
311   /* 删除cdev */
312   cdev_del(&led.cdev);
313
314   /* 注销设备号 */
315   unregister_chrdev_region(led.devid, LED_CNT);
316
317   /* 释放GPIO */
318   gpio_free(led.led_gpio);
319 }
320
321 /* 驱动模块入口和出口函数注册 */
322 module_init(led_init);
323 module_exit(led_exit);
324
325 MODULE_AUTHOR("DengTao <<a href="mailto:773904075@qq.com">773904075@qq.com</a>>");
326 MODULE_DESCRIPTION("Alientek Gpio LED Driver");
327 MODULE_LICENSE("GPL");       第33~45行,led设备结构体,在43行定义了一个定时器成员变量timer;在44行定义了一个自旋锁变量,用于对必要的代码段进行保护。
       第106~138行,函数led_unlocked_ioctl,对应应用程序的ioctl函数,应用程序调用ioctl函数向驱动发送控制信息,此函数响应并执行。此函数有三个参数:filp,cmd和arg,其中filp是对应的设备文件,cmd是应用程序发送过来的命令信息,arg是应用程序发送过来的参数,在本章例程中arg参数表示定时周期。
       本驱动成需一共定义了三种命令:CMD_LED_CLOSE、CMD_LED_OPEN和CMD_SET_PERIOD,这三个命令分别为熄灭LED灯、点亮LED灯(常亮)、LED灯闪烁。这三个命令的作用如下:
       CMD_LED_CLOSE:熄灭LED灯,首先调用del_timer_sync函数关闭定时器,然后再将LED熄灭。
       CMD_LED_OPEN:LED灯常亮,首先也是调用del_timer_sync函数关闭定时器,然后再将LED点亮。
   CMD_SET_PERIOD:让LED灯闪烁,参数arg就是闪烁周期,单位为毫秒(ms);从应用层传递过来的,将led的period成员变量设置为arg所表示定时周期,然后使用mod_timer打开定时器,使定时器以新的周期运行。
       在led_unlocked_ioctl函数中使用了自旋锁对代码段进行保护。
       第141~148行,led设备驱动操作函数集led_fops,在led的操作函数集中,led_read和led_write函数在本驱动程序中都没被用到,因为应用程序使用了ioctl函数对设备进行控制,所以驱动要定义led_unlocked_ioctl。
       第151~170行,函数led_timer_function,定时器服务函数,此函有一个参数arg,在初始化定时器的时候可以设置传递给led_timer_function函数的参数,不过在本例中我们没有用到。当定时周期到了以后此函数就会被调用;第157行,每次进入定时器服务函数都会将变量取反,实现LED灯闪烁的效果。因为内核定时器不是循环的定时器,执行一次以后就结束了,因此在166行又调用了mod_timer函数重新开启定时器;同样在这个服务函数中也使用了自旋锁进行保护!
       第172~298行,函数led_init,驱动入口函数。在179行初始化自旋锁;第280~281行,初始化定时器,设置定时器的定时处理函数为led_timer_function,在led_init函数中并没有调用timer_add函数来开启定时器,因此定时器默认是关闭的,除非应用程序发送打开命令。
       第300~319行,驱动出口函数。第303行调用del_timer_sync函数删除定时器,也可以使用del_timer函数。
1.3.3编写测试APP
       测试APP我们要实现的内容如下:
       ①运行APP以后提示我们输入LED灯控制命令,输入0表示熄灭LED、输入1表示点亮LED,输入2表示让LED灯周期性闪烁,并且此时提示再次输入闪烁周期,单位为毫秒。
       ②输入3则表示退出测试APP程序。
       好了搞清楚我们的逻辑、需求之后就可以开始编写测试程序了,在12_timer目录下新建名为timerApp.c的文件,然后输入如下所示内容:
示例代码 32.3.2 timerApp.c文件代码段
1 /***************************************************************
2Copyright © ALIENTEK Co., Ltd. 1998-2029. All rights reserved.
3文件名      : timerApp.c
4作者          : 邓涛
5版本          : V1.0
6描述          : linux内核定时器测试程序
7其他          : 无
8使用方法      : ./timerApp /dev/led
9论坛          : <a href="www.openedv.com" target="_blank">www.openedv.com</a>
10日志          : 初版V1.0 2019/1/30 邓涛创建
11***************************************************************/
12
13 #include <stdio.h>
14 #include <unistd.h>
15 #include <sys/types.h>
16 #include <sys/stat.h>
17 #include <fcntl.h>
18 #include <stdlib.h>
19 #include <string.h>
20 #include <sys/ioctl.h>
21
22 /* ioctl命令 */
23 #define CMD_LED_CLOSE      (_IO(0XEF, 0x1))   /* 关闭LED */
24 #define CMD_LED_OPEN       (_IO(0XEF, 0x2))   /* 打开LED */
25 #define CMD_SET_PERIOD   (_IO(0XEF, 0x3))   /* 设置LED闪烁频率 */
26
27 /*
28* @description                        : main主程序
29* @param – argc                        : argv数组元素个数
30* @param – argv                        : 具体参数
31* @return                              : 0 成功;其他 失败
32*/
33 int main(int argc, char *argv[])
34 {
35   int fd, ret;
36   unsigned int cmd;
37   unsigned int period;
38
39   if(2 != argc) {
40         printf("Usage:\n"
41                "\t./timerApp /dev/led   @ open LED device\n"
42         );
43         return -1;
44   }
45
46   /* 打开设备 */
47   fd = open(argv, O_RDWR);
48   if(0 > fd) {
49         printf("ERROR: %s file open failed!\r\n", argv);
50         return -1;
51   }
52
53   /* 通过命令控制LED设备 */
54   for ( ; ; ) {
55
56         printf("Input CMD:");
57         scanf("%d", &cmd);
58
59         switch (cmd) {
60
61         case 0:
62             cmd = CMD_LED_CLOSE;
63             break;
64
65         case 1:
66             cmd = CMD_LED_OPEN;
67             break;
68
69         case 2:
70             cmd = CMD_SET_PERIOD;
71             printf("Input Timer Period:");
72             scanf("%d", &period);
73             break;
74
75         case 3:
76             close(fd);
77             return 0;
78
79         default: break;
80         }
81
82         ioctl(fd, cmd, period);
83   }
84 }       第23~25行,ioctl命令值,这个命令值跟驱动中定义的是一样的。
       第54~83行,在for循环中,首先让用户输入要测试的命令,例如输入0表示关闭LED,将cmd设置为CMD_LED_CLOSE;输入1表示打开LED灯,将cmd设置为CMD_LED_OPEN;输入2表示让LED灯周期性闪烁,让后再提示用户输入闪烁周期。
       上面的命令输入完成之后,第82行通过调用ioctl函数发送cmd给驱动程序,并且ioctl函数的arg参数就是用户输入的周期值(当用户输入命令为2时)。
       测试完成之后用户可以输入3命令退出测试程序。
       1.4运行测试
1.4.1编译驱动程序和测试APP
       1、编译驱动程序
       编写Makefile文件,将第三十一章实验目录11_key下的Makefile文件拷贝到当前实验目录下,打开Makfile文件,将obj-m变量的值改为timer.o,修改完成之后Makefile内容如下所示:
示例代码 32.4.1 Makefile文件
1 KERN_DIR := /home/zynq/linux/kernel/linux-xlnx-xilinx-v2018.3
2
3 obj-m := timer.o
4
5 all:
6               make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- -C $(KERN_DIR) M=`pwd` modules
7
8 clean:
9               make -C $(KERN_DIR) M=`pwd` clean       第3行,设置obj-m变量的值为timer.o。
       修改完成之后保存退出,在实验目录下输入如下命令编译出驱动模块文件:
make       编译成功以后就会生成一个名为“timer.ko”的驱动模块文件,如下所示:

图 32.4.1 编译timer驱动模块
       2、编译测试APP
       输入如下命令编译测试timerApp.c这个测试程序:
arm-linux-gnueabihf-gcc timerApp.c -o timerApp       编译成功以后就会生成timerApp这个应用程序。
1.4.2运行测试
       将上一小节编译出来的timer.ko和timerApp这两个文件拷贝到开发板根文件系统/lib/modules/4.14.0-xilinx目录中,重启开发板,进入到目录/lib/modules/4.14.0-xilinx中,输入如下命令加载timer.ko驱动模块:
depmod                              //第一次加载驱动的时候需要运行此命令
modprobe timer.ko                //加载驱动       驱动加载成功以后如下命令来测试:
./timerApp /dev/timer       输入上述命令以后终端提示输入命令,如所示:

图 32.4.2 运行timerApp测试程序
       输入“0”回车,关闭LED;输入1回车,点亮LED;输入2回车之后,又会提示用户输入一个闪烁周期值,以毫秒为单位,操作如下所示:

图 32.4.3 输入相应数字执行命令
       上面输入“50”,表示设置定时器周期值为50ms,设置好以后LED灯就会以50ms为间隔,开始闪烁。测试完成之后我们可以输入3退出测试APP。       这里需要注意的是,我们的测试程序代码中并没有对输入的内容做检测,所以如果输入了其它的字符可能会导致奇怪的现象!当然大家可以对测试程序代码进行完善。
       通过下面的命令卸载驱动模块:
rmmod timer.ko

页: [1]
查看完整版本: 《领航者ZYNQ之嵌入式Linux开发指南_V2.0》第三十二章 内核定时器