正点原子 发表于 2022-1-20 18:13:11

《领航者ZYNQ之嵌入式Linux开发指南_V2.0》第二十五章 设备树下LED

1)实验平台:正点原子领航者V2 ZYNQ开发板
2)章节摘自【正点原子】《领航者ZYNQ之嵌入式Linux开发指南_V2.0》
3)购买链接:https://detail.tmall.com/item.htm?id=609032204975
4)全套实验源码+手册+视频下载地址:http://www.openedv.com/thread-329957-1-1.html
5)正点原子官方B站:https://space.bilibili.com/394620890
6)正点原子FPGA技术交流QQ群:90562473







第二十五章 设备树下的LED驱动实验
       上一章我们详细的讲解了设备树语法以及在驱动开发中常用的OF函数,本章我们就开始第一个基于设备树的Linux驱动实验。本章在第二十三章实验的基础上完成,只是将其驱动开发改为设备树形式而已。

       1.1设备树LED驱动原理
       在《第二十三章 新字符设备驱动实验》中,我们直接在驱动文件newchrled.c中定义有关寄存器物理地址,然后使用io_remap函数进行内存映射,得到对应的虚拟地址,最后操作寄存器对应的虚拟地址完成对GPIO的初始化。本章我们在第二十三章实验基础上完成,本章我们使用设备树来向Linux内核传递相关的寄存器物理地址,Linux驱动文件使用上一章讲解的OF函数从设备树中获取所需的属性值,然后使用获取到的属性值来初始化相关的IO。本章实验还是比较简单的,本章实验重点内容如下:
       ①在system-top.dts文件中创建相应的设备节点。
       ②编写驱动程序(在第二十三章实验基础上完成),获取设备树中的相关属性值。
       ③使用获取到的有关属性值来初始化LED所使用的GPIO以及初始状态。
       1.2硬件原理图分析
       本章实验硬件原理图参考22.3小节即可。
       1.3实验程序编写
       本实验对应的例程路径为:ZYNQ开发板光盘资料(A盘)\4_SourceCode\3_Embedded_Linux\Linux驱动例程\4_dtsled
       本章实验在第二十三章实验的基础上完成,重点是将驱动改为基于设备树形式。
1.3.1修改设备树文件
       打开linux内核源码目录下的arch/arm/boot/dts/system-top.dts文件,在根节点“/”下创建一个名为“led”的子节点,led节点内容如下所示:
<font size="2">示例代码 25.3.1 led节点
......
8 /dts-v1/;
9 #include "zynq-7000.dtsi"
10 #include "pl.dtsi"
11 #include "pcw.dtsi"
12 / {
13   model = "Alientek ZYNQ Development Board";
14
15   chosen {
16         bootargs = "console=ttyPS0,115200 earlyprintk root=/dev/mmcblk0p2 rw rootwait";
17         stdout-path = "serial0:115200n8";
18   };
19   aliases {
20         ethernet0 = &gem0;
21         i2c0 = &i2c_2;
22         i2c1 = &i2c0;
23         i2c2 = &i2c1;
24         serial0 = &uart0;
25         serial1 = &uart1;
26         spi0 = &qspi;
27   };
28   memory {
29         device_type = "memory";
30         reg = <0x0 0x20000000>;
31   };
32
33   led {
34         compatible = "alientek,led";
35         status = "okay";
36         default-state = "on";
37
38         reg = <0xE000A040 0x4
39               0xE000A204 0x4
40               0xE000A208 0x4
41               0xE000A214 0x4
42               0xF800012C 0x4
43               >;
44   };
45 };
......</font>       第33~44行,在根节点下定义了一个led子节点。
       第34行,添加compatible属性,并将属性值设置为“alientek,led”。
       第35行,添加status属性,并将属性值设置为“okay”。
       第36行,添加default-state属性,并将属性值设置为“on”。
       第38~43行,添加reg属性,非常重要!reg属性设置了驱动里面所要使用的寄存器物理地址,比如第38行的“0xE000A040 0x04”表示ZYNQ的GPIO模块的寄存器DATA寄存器,其中寄存器首地址为0xE000A040,长度为4个字节;第39行表示DIRM寄存器的首地址为0xE000A204,长度为4个字节;第40行表示OUTEN寄存器的首地址为0xE000A208;第41行表示INTDIS寄存器的首地址为0xE000A214,长度为4个字节;第42行表示APER_CLK_CTRL寄存器的首地址为0xF800012C,长度为4个字节。
       设备树修改完成后保存退出,在内核源码目录下执行下面这条命令重新编译一下system-top.dts设备树源文件:
make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- system-top.dtb

图 25.3.1 编译设备树
       编译完成以后得到system-top.dtb二进制文件,将system-top.dtb文件重命名为system.dtb,然后拷贝到SD启动卡的FAT分区替换掉之前的system.dtb文件,替换完成之后重新启动开发板linux系统。Linux启动成功以后进入到/proc/device-tree/目录中查看是否有“led”这个节点,结果如图 25.3.2所示:

图 25.3.2 led节点
       如果没有“led”节点的话请重点注意下面两点:
       ①、检查设备树修改是否成功,也就是led节点是否为根节点“/”的子节点。
       ②、检查是否使用的是新的设备树启动Linux内核。
       可以进入到图 25.3.2中的led目录中,查看一下都有哪些属性文件,结果如下图所示:

图 25.3.3 led节点下的属性
      大家可以用cat命令查看一下compatible、status、default-state等属性值是否和我们设置的一致。细心的同学会发现这里边多了一个“name”属性,我们在添加led节点的时候并没设置name属性呀,那这是怎么回事呢?name属性其实也是一个标准属性,但是现在被弃用了,其实不止led这个节点多了name属性,其它所有的节点也都多了这个属性,但它的值是空的,这是内核在解析设备树的时候给加上去的,注意:现在已经不用这个属性了,被弃用了!所以我们不用管它。
1.3.2LED灯驱动程序编写
       设备树准备好以后就可以编写驱动程序了,本章实验在第二十三章实验驱动文件newchrled.c的基础上修改而来。首先在drivers目录下新建名为“4_dtsled”文件夹,进入到4_dtsled目录,新建名为dtsled.c的C源文件,在dtsled.c里面输入如下内容:
<font size="2">示例代码 25.3.2 dtsled.dts文件内容
1 /***************************************************************
2Copyright © ALIENTEK Co., Ltd. 1998-2029. All rights reserved.
3文件名    : dtsled.c
4作者      : 邓涛
5版本      : V1.0
6描述      : ZYNQ LED驱动文件。
7其他      : 无
8论坛      : <a href="www.openedv.com" target="_blank" style="">www.openedv.com</a>
9日志      : 初版V1.0 2019/1/30 邓涛创建
10***************************************************************/
11
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/ide.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/gpio.h>
20 #include <asm/mach/map.h>
21 #include <asm/uaccess.h>
22 #include <asm/io.h>
23 #include <linux/cdev.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26
27 #define DTSLED_CNT                        1                        /* 设备号个数 */
28 #define DTSLED_NAME                "dtsled"                /* 名字 */
29
30 /* 映射后的寄存器虚拟地址指针 */
31 static void __iomem *data_addr;
32 static void __iomem *dirm_addr;
33 static void __iomem *outen_addr;
34 static void __iomem *intdis_addr;
35 static void __iomem *aper_clk_ctrl_addr;
36
37 /* dtsled设备结构体 */
38 struct dtsled_dev {
39   dev_t devid;                        /* 设备号 */
40   struct cdev cdev;                /* cdev */
41   struct class *class;                /* 类 */
42   struct device *device;      /* 设备 */
43   int major;                              /* 主设备号 */
44   int minor;                        /* 次设备号 */
45   struct device_node *nd;      /* 设备节点 */
46 };
47
48 static struct dtsled_dev dtsled;   /* led设备 */
49
50 /*
51* @description                        : 打开设备
52* @param – inode                        : 传递给驱动的inode
53* @param – filp                        : 设备文件,file结构体有个叫做private_data的成员变量
54*                                                一般在open的时候将private_data指向设备结构体。
55* @return                              : 0 成功;其他 失败
56*/
57 static int led_open(struct inode *inode, struct file *filp)
58 {
59   filp->private_data = &dtsled;   /* 设置私有数据 */
60   return 0;
61 }
62
63 /*
64* @description                        : 从设备读取数据
65* @param – filp                        : 要打开的设备文件(文件描述符)
66* @param – buf                        : 返回给用户空间的数据缓冲区
67* @param – cnt                        : 要读取的数据长度
68* @param – offt                        : 相对于文件首地址的偏移
69* @return                              : 读取的字节数,如果为负值,表示读取失败
70*/
71 static ssize_t led_read(struct file *filp, char __user *buf,
72             size_t cnt, loff_t *offt)
73 {
74   return 0;
75 }
76
77 /*
78* @description                        : 向设备写数据
79* @param – filp                        : 设备文件,表示打开的文件描述符
80* @param – buf                        : 要写给设备写入的数据
81* @param – cnt                        : 要写入的数据长度
82* @param – offt                        : 相对于文件首地址的偏移
83* @return                              : 写入的字节数,如果为负值,表示写入失败
84*/
85 static ssize_t led_write(struct file *filp, const char __user *buf,
86             size_t cnt, loff_t *offt)
87 {
88   int ret;
89   int val;
90   char kern_buf;
91
92   ret = copy_from_user(kern_buf, buf, cnt);       // 得到应用层传递过来的数据
93   if(0 > ret) {
94         printk(KERN_ERR "kernel write failed!\r\n");
95         return -EFAULT;
96   }
97
98   val = readl(data_addr);
99   if (0 == kern_buf)
100         val &= ~(0x1U << 7);                // 如果传递过来的数据是0则关闭led
101   else if (1 == kern_buf)
102         val |= (0x1U << 7);                        // 如果传递过来的数据是1则点亮led
103
104   writel(val, data_addr);
105   return 0;
106 }
107
108 /*
109* @description                        : 关闭/释放设备
110* @param – filp                        : 要关闭的设备文件(文件描述符)
111* @return                              : 0 成功;其他 失败
112*/
113 static int led_release(struct inode *inode, struct file *filp)
114 {
115   return 0;
116 }
117
118 static inline void led_ioremap(void)
119 {
120   data_addr = of_iomap(dtsled.nd, 0);
121   dirm_addr = of_iomap(dtsled.nd, 1);
122   outen_addr = of_iomap(dtsled.nd, 2);
123   intdis_addr = of_iomap(dtsled.nd, 3);
124   aper_clk_ctrl_addr = of_iomap(dtsled.nd, 4);
125 }
126
127 static inline void led_iounmap(void)
128 {
129   iounmap(data_addr);
130   iounmap(dirm_addr);
131   iounmap(outen_addr);
132   iounmap(intdis_addr);
133   iounmap(aper_clk_ctrl_addr);
134 }
135
136 /* 设备操作函数 */
137 static struct file_operations dtsled_fops = {
138   .owner   = THIS_MODULE,
139   .open    = led_open,
140   .read    = led_read,
141   .write   = led_write,
142   .release = led_release,
143 };
144
145 static int __init led_init(void)
146 {
147   const char *str;
148   u32 val;
149   int ret;
150
151   /* 1.获取led设备节点 */
152   dtsled.nd = of_find_node_by_path("/led");
153   if(NULL == dtsled.nd) {
154         printk(KERN_ERR "led node can not found!\r\n");
155         return -EINVAL;
156   }
157
158   /* 2.读取status属性 */
159   ret = of_property_read_string(dtsled.nd, "status", &str);
160   if(!ret) {
161         if (strcmp(str, "okay"))
162         return -EINVAL;
163   }
164
165   /* 2、获取compatible属性值并进行匹配 */
166   ret = of_property_read_string(dtsled.nd, "compatible", &str);
167   if(0 > ret)
168         return -EINVAL;
169
170   if (strcmp(str, "alientek,led"))
171         return -EINVAL;
172
173   printk(KERN_ERR "led device matching successful!\r\n");
174
175   /* 4.寄存器地址映射 */
176   led_ioremap();
177
178   /* 5.使能GPIO时钟 */
179   val = readl(aper_clk_ctrl_addr);
180   val |= (0x1U << 22);
181   writel(val, aper_clk_ctrl_addr);
182
183   /* 6.关闭中断功能 */
184   val |= (0x1U << 7);
185   writel(val, intdis_addr);
186
187   /* 7.设置GPIO为输出功能 */
188   val = readl(dirm_addr);
189   val |= (0x1U << 7);
190   writel(val, dirm_addr);
191
192   /* 8.使能GPIO输出功能 */
193   val = readl(outen_addr);
194   val |= (0x1U << 7);
195   writel(val, outen_addr);
196
197   /* 9.初始化LED的默认状态 */
198   val = readl(data_addr);
199
200   ret = of_property_read_string(dtsled.nd, "default-state", &str);
201   if(!ret) {
202         if (!strcmp(str, "on"))
203             val |= (0x1U << 7);
204         else
205             val &= ~(0x1U << 7);
206   } else
207         val &= ~(0x1U << 7);
208
209   writel(val, data_addr);
210
211   /* 10.注册字符设备驱动 */
212      /* 创建设备号 */
213   if (dtsled.major) {
214         dtsled.devid = MKDEV(dtsled.major, 0);
215         ret = register_chrdev_region(dtsled.devid, DTSLED_CNT, DTSLED_NAME);
216         if (ret)
217             goto out1;
218   } else {
219         ret = alloc_chrdev_region(&dtsled.devid, 0, DTSLED_CNT, DTSLED_NAME);
220         if (ret)
221             goto out1;
222
223         dtsled.major = MAJOR(dtsled.devid);
224         dtsled.minor = MINOR(dtsled.devid);
225   }
226
227   printk("dtsled major=%d,minor=%d\r\n",dtsled.major, dtsled.minor);
228
229      /* 初始化cdev */
230   dtsled.cdev.owner = THIS_MODULE;
231   cdev_init(&dtsled.cdev, &dtsled_fops);
232
233      /* 添加一个cdev */
234   ret = cdev_add(&dtsled.cdev, dtsled.devid, DTSLED_CNT);
235   if (ret)
236         goto out2;
237
238      /* 创建类 */
239   dtsled.class = class_create(THIS_MODULE, DTSLED_NAME);
240   if (IS_ERR(dtsled.class)) {
241         ret = PTR_ERR(dtsled.class);
242         goto out3;
243   }
244
245      /* 创建设备 */
246   dtsled.device = device_create(dtsled.class, NULL,
247               dtsled.devid, NULL, DTSLED_NAME);
248   if (IS_ERR(dtsled.device)) {
249         ret = PTR_ERR(dtsled.device);
250         goto out4;
251   }
252
253   return 0;
254
255 out4:
256   class_destroy(dtsled.class);
257
258 out3:
259   cdev_del(&dtsled.cdev);
260
261 out2:
262   unregister_chrdev_region(dtsled.devid, DTSLED_CNT);
263
264 out1:
265   led_iounmap();
266
267   return ret;
268 }
269
270 static void __exit led_exit(void)
271 {
272   /* 注销设备 */
273   device_destroy(dtsled.class, dtsled.devid);
274
275   /* 注销类 */
276   class_destroy(dtsled.class);
277
278   /* 删除cdev */
279   cdev_del(&dtsled.cdev);
280
281   /* 注销设备号 */
282   unregister_chrdev_region(dtsled.devid, DTSLED_CNT);
283
284   /* 取消地址映射 */
285   led_iounmap();
286 }
287
288 /* 驱动模块入口和出口函数注册 */
289 module_init(led_init);
290 module_exit(led_exit);
291
292 MODULE_AUTHOR("DengTao <<a href="mailto:773904075@qq.com" style="">773904075@qq.com</a>>");
293 MODULE_DESCRIPTION("Alientek ZYNQ GPIO LED Driver");
294 MODULE_LICENSE("GPL");</font>       dtsled.c文件中的内容和第二十三章的newchrled.c文件中的内容基本一样,只是dtsled.c中包含了处理设备树的代码,我们重点来看一下这部分代码。
       第45行,在设备结构体dtsled_dev中添加了成员变量nd,nd是device_node结构体类型指针,表示设备节点。如果我们要读取设备树某个节点的属性值,首先要先得到这个节点,一般在设备结构体中添加device_node指针变量来存放这个节点。
       第118~125行,通过使用of_iomap函数替换之前使用ioremap函数来实现物理地址到虚拟地址的映射,它能够直接解析给定节点的reg属性,并将reg属性中存放的物理地址和长度进行映射,使用不同的下标依次对reg数组中记录的不同组“物理地址-长度”地址空间进行映射,非常的方便!
       第152~156行,通过of_find_node_by_path函数获取设备树根节点下的led节点,这里我们用的是绝对路径“/led”,因为led节点就在根节点“/”下;只有获取成功了才会进行下面的步骤!
       第159~163行,通过of_property_read_string函数获取led节点的“status”属性的内容,当节点中定义了“status”属性,并且值为“okay”时表示设备是可用的,才会进行下面的操作;如果没有定义“status”属性则默认设备树可用的。
       第166~173行,通过of_property_read_string函数获取led节点的“compatible”属性的内容,如果节点中没有定义这个属性(也就是获取失败),则表示这个节点不支持我们的驱动直接退出;如果获取成功了,则使用strcmp函数进行比较,看是否等于“alientek,led”,如果相同则表示匹配成功,可以接着进行下面的步骤了。
       第176行,调用自定义的led_ioremap函数进行物理地址到虚拟地址的映射。
       第200~209行,通过of_property_read_string函数获取led节点的“default-state”属性的内容,根据读取到的内容来设置LED灯的初始状态。
       那么其他的内容前面都已经讲过了,没什么好说的了,本身驱动也非常的简单。
1.3.3编写测试APP
       本章直接使用第二十三章的测试APP,将第二十三章实验工程目录下的ledApp.c源文件和ledApp可执行文件一并复制到本章实验工程下即可,这样就不用再去编译ledApp.c了。
       1.4运行测试
1.4.1编译驱动程序和测试APP
       1、编译驱动程序
       编写Makefile文件,本章实验的Makefile文件和第二十三章实验基本一样,我们直接将第二十三章实验目录下的Makefile文件拷贝到本实验目录中,修改Makefile文件,只是将obj-m变量的值改为dtsled.o,Makefile内容如下所示:
<font size="2">示例代码 25.4.1 Makefile文件
1 KERN_DIR := /home/zynq/linux/kernel/linux-xlnx-xilinx-v2018.3
2
3 obj-m := dtsled.o
4
5 all:
6         make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- -C $(KERN_DIR) M=`pwd` modules
7
8 clean:
9         make -C $(KERN_DIR) M=`pwd` clean</font>       第3行,设置obj-m变量的值为dtsled.o。
       输入如下命令编译出驱动模块文件:
make       编译成功以后就会生成一个名为“dtsled.ko”的驱动模块文件,如下所示:

图 25.4.1 编译驱动模块
       2、编译测试APP
       直接使用第二十三章编译好的可执行文件ledApp。
1.4.2运行测试
       将上编译出来的dtsled.ko和ledApp这两个文件拷贝到开发板根文件系统/lib/modules/4.14.0-xilinx目录中,重启开发板,进入到/lib/modules/4.14.0-xilinx目录,输入如下命令加载dtsled.ko驱动模块:
<font size="2">depmod                              //第一次加载驱动的时候需要运行此命令
modprobe dtsled.ko                //加载驱动</font>       驱动加载成功以后会在终端中输出一些信息,如下图所示:

图 25.4.2 加载驱动
       从图 25.4.2可以看出,led驱动已经和led设备节点匹配成功了!并且开发板上的PS_LED0被点亮了,因为我们在设备树中将led节点的“default-state”属性的值设置为“on”,所以初始化LED的时候会将其点亮。
       驱动加载成功以后就可以使用ledApp软件来测试驱动是否工作正常,输入如下命令打开LED灯:
./ledApp /dev/dtsled 0                //关闭LED等       输入上述命令以后查看开发板上的PS_LED0灯是否熄灭,如果熄灭的话说明驱动工作正常。在输入如下命令点亮灯:
./ledApp /dev/dtsled 1                //点亮LED灯       输入上述命令以后查看开发板上的PS_LED0灯是否被点亮。如果要卸载驱动的话输入如下命令即可:
rmmod dtsled.ko
页: [1]
查看完整版本: 《领航者ZYNQ之嵌入式Linux开发指南_V2.0》第二十五章 设备树下LED